If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=18x^2
We move all terms to the left:
60-(18x^2)=0
a = -18; b = 0; c = +60;
Δ = b2-4ac
Δ = 02-4·(-18)·60
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*-18}=\frac{0-12\sqrt{30}}{-36} =-\frac{12\sqrt{30}}{-36} =-\frac{\sqrt{30}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*-18}=\frac{0+12\sqrt{30}}{-36} =\frac{12\sqrt{30}}{-36} =\frac{\sqrt{30}}{-3} $
| x/22-3=5/22 | | /4x+3x=14 | | x+3/4=90 | | 56+6a=10a-8(11+2a) | | 4x+1/29=180 | | 8n-4=-2+6 | | 12x+10x14=80 | | -19+5w=-13+2w | | |n+7|=6 | | (7x-3)-(6x+17)=180 | | 2(2r+3)=r | | 00-6x=160-10 | | -x+4x-11+3x=10-x+14 | | x*6.5=13 | | 4-{x}{2}=1 | | 10-2x=19x+2x-5x | | -8+a=12 | | 7x-19=160 | | x/6.5=13 | | 8c−2(c−5)=70 | | b/4(7-2)=7 | | |4x-1|=|7x+2| | | 5x+-6=3x+10 | | 5(6v+7)=-145 | | 5x+57=3x+5 | | 8a+22=-2(a+4) | | 37=4d+9 | | 100=4(4n+5) | | -8u=-7u-20 | | x*6.5=12 | | h/6+12=16 | | -2=-2x+5 |